На информационном ресурсе применяются рекомендательные технологии (информационные технологии предоставления информации на основе сбора, систематизации и анализа сведений, относящихся к предпочтениям пользователей сети "Интернет", находящихся на территории Российской Федерации)

RT Russia

11 414 подписчиков

Свежие комментарии

  • Evgeni Velesik
    Спец политрук!Полковник в отста...
  • Evgeni Velesik
    Для взрослых это отпад! Только Зеленка!Врач Неронов опис...
  • Игорь Васиков
    58% наших учеников с трудом пройдут нормальный тест. А тут мигранты прошли... кто-то пu3дuт похоже...Более 70% детей м...

«Комбинация воды и графеновых хлопьев»: российские учёные создали новую технологию опреснения

Российские учёные разработали и испытали метод опреснения воды с помощью хлопьев из графена размером с клетку человеческой кожи. Авторы работы добавили такие частицы в воду и проверили, как быстро она будет испаряться под воздействием света в разных диапазонах спектра. Оказалось, что под лучами солнца графен ускоряет испарение воды на 95%.

Это может найти применение не только в системах для опреснения и очистки воды, но и в солнечной энергетике.

Российские учёные из Национального исследовательского университета «МЭИ» выяснили, как ускорить испарение воды при помощи наночастиц графена на 95% без дополнительных энергозатрат. Открытие может найти применение в установках для опреснения и очистки воды. Об этом RT рассказали в пресс-службе Российского научного фонда (РНФ). Исследование проведено при поддержке РНФ. Результаты опубликованы в журнале Solar Energy.

Графен — наноматериал, состоящий из углеродного слоя атомарной толщины. Он способен хорошо проводить тепло и имеет большую площадь поверхности. Авторы работы решили применить эти свойства материала, чтобы ускорить испарение воды. Это важно для совершенствования установок для опреснения солёной морской воды и очистки сточных вод от загрязняющих примесей.

Сначала учёные подготовили опытную наножидкость — дистиллированную воду с добавлением 5% хлопьев графена размером с клетку кожи человека и толщиной в 3–5 атомов углерода.

Опреснение водыGettyimages.ru Abstract Aerial Art

Кроме того, исследователи построили специальную установку для проведения экспериментов. Она состоит из источника нагревающего излучения, контейнера для жидкости, а также системы измерения её температуры и массы.

Затем учёные сравнили скорость испарения воды из сосуда, где находилась вода с добавлением графена и обычной дистиллированной воды. Оба образца по очереди облучали синим, зелёным, красным, ближним и дальним инфракрасным светом.

Оказалось, что дальний инфракрасный свет поглощается преимущественно водой, поэтому графеновая наножидкость и дистиллированная вода нагрелись одинаково. Облучение синим светом не изменило температуру ни одного из образцов. А красный свет не повлиял на графен, но охладил воду.

Зато обучение зелёным и ближним инфракрасным светом дало очень хороший результат. Температура воды с хлопьями графена за полтора часа эксперимента повысилась с 15,5 С до 18,5 С, а температура чистой воды не изменилась. Это говорит о том, что излучение с такими длинами волн поглощается в основном именно графеном. Нанохлопья нагреваются сами и эффективно нагревают воду, что ускоряет её испарение.

Учёные провели ещё один эксперимент, уже с солнечным светом — под его воздействием вода из сосуда с графеновыми наночастицами испарялась на 68–95% быстрее, чем из сосуда с чистой водой. Этот эффект может найти применение не только для создания новых систем опреснения и очистки воды, но и в солнечной энергетике.

Теперь авторы исследования намерены добиться стабильности графеновой наножидкости — найти решение, которое не позволит частицам оседать на дно ёмкости с водой.

«Комбинация воды и графеновых хлопьев может служить хорошей рабочей жидкостью, способной поглощать широкий диапазон длин волн для прямого преобразования солнечного излучения в тепловую энергию. Полученные нами данные позволят решить многие прикладные задачи в таких областях как солнечная энергетика и традиционные тепловые системы», — пояснила RT доцент кафедры низких температур Московского энергетического института Инна Михайлова.

 

Ссылка на первоисточник

Картина дня

наверх